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Abstract

In this study, reservoir water level effects on nonlinear dynamic response of arch dams are investigated. For this

purpose, the nonlinear behaviour of the dam concrete is idealized as elasto-plastic using the Drucker–Prager model based

on the associated flow rule assumption. Water in the reservoir is represented by the Lagrangian (displacement-based) fluid

finite elements. The program NONSAP is modified for elasto-plastic analysis of fluid–structure systems and employed in

the response calculations. Nonlinear dynamic analysis of an arch dam subjected to earthquake ground motion is

performed for five different water levels. The El-Centro N–S component of the Imperial Valley earthquake, on May 18,

1940, has been used as the ground motion. The crest displacements, the maximum tensile stresses on the upstream and

downstream faces of the dam and the time history of the yield function of an element in the dam body are presented. The

results obtained from nonlinear analyses for different water levels are compared with each other. It is apparent that the

reservoir water level effects must be considered in the elasto-plastic analyses of arch dams to earthquake ground motion.
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Keywords: Arch dams; Dam–water–foundation rock interaction; Reservoir water level effect; Lagrangian approach; Nonlinear

dynamic analysis; Drucker–Prager model; Earthquake ground motion
1. Introduction

The prediction of the actual dynamic response of an arch dam to earthquake loadings is a very complicated problem

and depends on several factors such as interaction of the dam with its foundation rock and water in reservoir, computer

modelling and selected material properties, etc. Therefore, an efficient method is required to properly assess the safety

of an arch dam located in regions with significant seismicity. From this point of view, nonlinear dynamic analysis of

arch dams for earthquake ground motions should be based on a detailed analytical model. Furthermore, this model

should be capable of representing correctly both the materially nonlinear behaviour and the three-dimensional nature of

the dam–water–foundation system that account for the interaction effects of the foundation rock and the impounded

water.

Interaction between the dam and impounded water is an important factor affecting the dynamic response of arch

dams during earthquake ground motion. When an arch dam–water system is subjected to a dynamic effect such as

earthquake, hydrodynamic pressures in excess of hydrostatic pressures occur on the dam due to the vibration of the
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Nomenclature

B strain–displacement matrix

c cohesion

C11 bulk modulus of fluid

C22, C33, C44 constraint parameters for fluid

Cc damping matrix of coupled system

dl proportionality factor

Dn
e elastic constitutive matrix (ECM)

Dn
ep elasto-plastic constitutive matrix (EPCM)

f yield function

G shear modulus

I1 first invariant of stress tensor

J2 second invariant of deviatoric stress tensor

k a constant which depends on cohesion c and

angle of internal friction f
K bulk modulus

Kf stiffness matrix of fluid system

K�f system stiffness matrix including the free

surface stiffness of fluid system

Kc stiffness matrix of coupled system

Mf mass matrix of fluid system

Mc mass matrix of coupled system

P pressures which are equal to mean stresses

Px, Py, Pz rotational stresses of fluid

r scaling factor

R load vector

Rf time-varying nodal force vector of fluid

system

Rc external load vector of coupled system

sij deviatoric stress tensor

Sf stiffness matrix of free surface of fluid

system

T kinetic energy of fluid system

U nodal displacements vector

Uf nodal displacement vector of fluid system

Usf vertical nodal displacement vector of fluid

system

Uc displacement vector of coupled system
_Uf nodal velocity vector of fluid system
_Uc velocity vector of coupled system
€Uf nodal acceleration vector of fluid system
€Uc acceleration vector of coupled system

wx, wy and wz rotations about the cartesian axis x, y

and z

a a constant which depends on cohesion c and

angle of internal friction f
dij Kronecker delta

�nij strains at the end of nth loading increment

�nþ1=2ij strains at (n+1/2)th loading increment

�nþ1ij strains at (n+1)th loading increment

ev volumetric strain of fluid,

pe total strain energy of fluid system

ps free surface potential energy of fluid system

sn
ij stresses at the end of nth loading increment

snþ1=2
ij stresses at (n+1/2)th loading increment

snþ1
ij stresses at (n+1)th loading increment

f angle of internal friction
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dam and water in the reservoir. These hydrodynamic pressures and the deformation of the dam interact with each other

(Perumalswami and Kar, 1973). Therefore, the water level effect on the earthquake response of arch dams must be

considered in the dynamic analysis. The magnitude of the hydrodynamic effects on an arch dam during earthquakes is

based on the variation of water level in the reservoir. The reservoir water level varies according to season and can

considerably affect the response of arch dams during earthquakes. The importance of the hydrodynamic effects on the

behaviour of arch dams subjected to earthquake ground motions has long been recognized (Perumalswami and Kar,

1973; Fok and Chopra, 1986a, b; Tan and Chopra, 1995a, b). In the previous studies, the complex frequency functions

have been used to define dam–water interactions and the concrete material was assumed to be linearly elastic. They have

shown that the hydrodynamic pressures play an important role on the dynamic response of arch dams. In these studies,

the reservoir was generally considered as empty or full. Proulx et al. (2001) have experimentally and numerically

investigated the variation of the resonant frequencies of the Emosson arch dam for four different water levels.

On the other hand, equilibrium equations for the system and kinematic relations for the compatibility between strain

and displacements should be verified for any nonlinear stress analysis problems. In addition, constitutive relations for

the stress and strain behaviour of the material should be determined. The great error in currently available techniques

for the nonlinear finite element analysis lies in the selection of an appropriate material model. Once the material model

is selected, the stress state can be evaluated for a given strain state. The strain state is estimated from the incremental

equilibrium equations of the system and subsequently from the kinematic relations (Chen and Mizuno, 1990). Concrete,

capable of displaying nonlinear characteristics, is an essential material in many structures such as arch dams. There are

several approaches to model the complicated stress–strain behaviour of concrete. In this regard, the theories based on

plasticity and fracture mechanics are commonly applied in most of the engineering analysis. However, only a few

studies taking into account material nonlinearity have been performed to investigate the dynamic behaviour of concrete

arch dams. Kuo (1982) suggested an interface smeared crack approach to model the contraction joints and applied this

technique to dynamic analysis of arch dams. Hall (1998) used a simple smeared crack model for modelling the

contraction and construction joints. Valliappan et al. (1999) utilized a continuum damage mechanics approach to
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investigate seismic response of arch dams. Espandar and Lotfi (2003) compared nonorthogonal smeared crack and an

elasto-plastic model based on Mohr–Coulomb yield criterion for dynamic analysis of concrete arch dams. Akkose

(2004) also used an elasto-plastic model based on the Drucker–Prager yield criterion in the nonlinear dynamic analysis

of arch dams. In the continuum models, such as elasto-plastic models and smeared crack models, the dam body is

assumed as a monolith and the nonlinear behaviour of the mass concrete of the dam body is investigated.

In this study, water level effects on the nonlinear dynamic response of an arch dam including dam–water–foundation

interaction is investigated by a Lagrangian approach in which a step-by-step integration technique is employed. The

stress–strain behaviour of the dam concrete is idealized using a three-dimensional Drucker–Prager model based on the

associated flow rule assumption. To this end, the three-dimensional version of Drucker–Prager model is incorporated

into a general finite element computer program NONSAP (Bathe et al., 1974) using mid-point integration method,

which is suitable for general structural analysis programs. In addition, the eight-noded three-dimensional version of the

Lagrangian fluid finite element put forward by Wilson and Khalvati (1983) is coded by authors in the FORTRAN

language and incorporated into the NONSAP program. The modified version of the NONSAP program for elasto-

plastic analysis of fluid–structure systems was employed in the response calculations. Nonlinear dynamic analyses of an

arch dam on both rigid and flexible foundation rock were performed for five different water levels. The results obtained

from nonlinear analyses for different water levels are compared with each other.
2. The Drucker-–Prager model

There are many criteria for the determination of the yield surface or yield function of materials. The Drucker–Prager

criterion is widely used for frictional materials such as rock and concrete. Drucker and Prager (1952) obtained a

convenient yield function to determine elasto-plastic behaviour of concrete, smoothing the Mohr–Coulomb criterion.

This function is defined as

f ¼ aI1 þ
ffiffiffiffiffi
J2

p
� k, (1)

where I1 is the first invariant of stress tensor sij and J2 is the second invariant of deviatoric stress tensor sij; a and k are

constants which depend on cohesion c and angle of internal friction f of the material given by

a ¼
2 sin fffiffiffi

3
p
ð3� sin fÞ

; k ¼
6c cos fffiffiffi
3
p
ð3� sin fÞ

. (2, 3)

The implementation of the Drucker–Prager model to the general nonlinear finite element computer program NONSAP

is described herein. More details of the implementation of the model can be found in Chen and Mizuno (1990). The three-

dimensional version of the model based on the associated flow rule assumption is incorporated into the NONSAP program

using a mid-point integration method based on the two-stepped Runge–Kutta method. In this method, the first step is called

the mid-increment step, and the second step is called the full-increment step. The mid-point integration method reduces the

computational time and provides the necessary accuracy of the solution within the small strain increment.

2.1. Mid-increment step

It is assumed that stresses and strains in an element are sn
ij and �

n
ij at the end of the nth loading increment, respectively.

According to the stress state (elastic or plastic) in the element, either the elastic constitutive matrix (ECM) De or the

elasto-plastic constitutive matrix (EPCM) Dep is used to calculate the current element tangent stiffness.

Applying first the half of the incremental loads to the discretized system stiffness Kn, incremental strains d�nþ1=2
ij at the

(n+1/2)th increment are estimated from the kinematic condition as follows:

dUnþ1=2 ¼ ðKnÞ
�1 1

2
dR

� �
in structural level, (4)

d�nþ1=2 ¼ BdUnþ1=2 in an element level, (5)

where U, R and B are nodal displacements vector, load vector and strain-displacement matrix, respectively.

Subsequently, the corresponding stress increments dsnþ1=2
ij in all elements are estimated by using the current constitutive

matrix De or Dep. Then, the stresses snþ1=2
ij for all elements at the end of the (n+1/2)th loading increment are

approximated from the stresses sn
ij :

dsnþ1=2
ij ¼ De d�

nþ1=2
ij or dsnþ1=2

ij ¼ Dn
epd�

nþ1=2
ij ; snþ1=2

ij ¼ sn
ij þ dsnþ1=2

ij . (6, 7)
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The main purpose of the calculation made at the mid-increment step is to correct the stresses snþ1=2
ij in all elements if

necessary and to construct for each element a new constitutive matrix. In the following, the calculation steps at mid-

increment are presented.

Step 1: Preliminary calculation. The first invariant I
nþ1=2
1 of stress tensor and second invariant J

nþ1=2
2 of deviatoric stress

tensor are computed by using the stresses snþ1=2
ij .

Step 2: Check for tension cracking. When the stress state exceeds the apex of the yield surface, it will shift the hydrostatic

stress component to the corresponding hydrostatic pressure at the apex (Fig. 1) as follows:

~snþ1=2
ii ¼ snþ1=2

ii �
1

3
I

nþ1=2
1 �

k

a

� �
. (8)

Thus, the adjusted normal stresses can be estimated from Eq. (8), while the shearing stresses snþ1=2
12 ; snþ1=2

23 ; and snþ1=2
31

remain unchanged. Subsequently, the following steps should be performed.

Step 3: Check for a previously plastic element. If the element is in the plastic state at the end of the nth increment, the

element must be checked to determine whether it has undergone the plastic loading by calculating the proportionality

factor dl given by

dlnþ1=2
¼

1

H
3Kad�nþ1=2

v þ G
1ffiffiffiffiffi
Jn
2

p sn
kl de

nþ1=2
kl

" #
, (9)

where sn
kl are the deviatoric stresses at the end of the nth load increment and de

nþ1=2
kl are the deviatoric strain increments

at the end of the (n+1/2)th load increment; d�
nþ1=2
v is the sum of strain increments at the end of the (n+1/2)th load

increment. In Eq. (9), H is given by

H ¼ 9Ka2 þ G, (10)

where K and G are the bulk and shear modulus of the material, respectively. If dlnþ1=2 has a negative value, the element

has undergone a plastic unloading. Then, the ECM is assigned to compute the subsequent tangent stiffness of the

system as follows:

De ¼

K þ ð4=3ÞG K � ð2=3ÞG K � ð2=3ÞG 0 0 0

K � ð2=3ÞG K þ ð4=3ÞG K � ð2=3ÞG 0 0 0

K � ð2=3ÞG K � ð2=3ÞG K þ ð4=3ÞG 0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G

2
666666664

3
777777775
. (11)
1I−

2J

+1/ 2 +1/ 2
1 2(I , J )n

1 2(I , J )n n

Yield Surface =f
1

α

k

k/α

n

Fig. 1. Check for tensile stress (Chen and Mizuno, 1990).
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On the other hand, if dlnþ1=2 has a positive value, the element is assumed to remain plastic during the (n+1)th loading

increment. Then, the stress state snþ1=2
ij is scaled back to the failure or yield surface. In the scaling back procedure, the

hydrostatic component I1 and the principal directions of the stress tensor remain unchanged, while the deviatoric stress

components are reduced proportionality by the scaling factor r1. The scaling factor is expressed by

r1 ¼ DT=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J

nþ1=2
2

q
, (12)

where DT is the positive value defined by

DT ¼ �aInþ1=2
1 þ k. (13)

Thus, the scaled-back stresses are given by

~snþ1=2
ij ¼ r1s

nþ1=2
ij þ dij

1
3
I

nþ1=2
1 , (14)

where I
nþ1=2
1 ¼ snþ1=2

11 þ snþ1=2
22 þ snþ1=2

33 and dij is the Kronecker delta, its value is 1 for i ¼ j, 0 for i 6¼j.

Utilizing the above stress components, the EPCM can be computed for the construction of a new tangent stiffness

matrix at the mid-increment as

Dnþ1=2
ep ¼ De �Dnþ1=2

p , (15)

where De is the ECM given previously in Eq. (11) and Dnþ1=2
p can be written as

Dnþ1=2
p ¼

1

H

H2
11 H11H22 H11H33 H11H12 H11H13 H11H23

H22H11 H2
22 H22H33 H22H12 H22H13 H22H23

H33H11 H33H22 H2
33 H33H12 H33H13 H33H23

H12H11 H12H22 H12H33 H2
12 H12H13 H12H23

H13H11 H13H22 H13H33 H13H12 H2
13 H13H23

H23H11 H23H22 H23H33 H23H12 H23H13 H2
23

2
6666666664

3
7777777775
, (16)

in which the form of H is already given in Eq. (10). The components of this matrix are expressed as follows:

Hij ¼ 3Kadij þ
Gffiffiffiffiffiffiffiffiffiffiffiffiffi
~J

nþ1=2
2

q ~snþ1=2
ij , (17)

where ~snþ1=2
ij are the scaled-back deviatoric stresses, and

ffiffiffiffiffiffiffiffiffiffiffiffiffi
~J

nþ1=2
2

q
can be computed from the scaled-back stresses ~snþ1=2

ij .

Step 4: Check for a previously elastic element. For the element that is previously in an elastic state at the end of the nth

increment, the value of f ð¼ aI1 þ
ffiffiffiffiffi
J2
p
� kÞ is given by

f n
¼ aIn

1 þ
ffiffiffiffiffi
Jn
2

p
� ko0, (18)

where In
1 and Jn

2 are the first and second invariants of the stress tensor and deviatoric stress tensor obtained at the nth

load increment. The value of f at the mid-increment can be evaluated via

f nþ1=2
¼ aInþ1=2

1 þ

ffiffiffiffiffiffiffiffiffiffiffiffi
J

nþ1=2
2

q
� k. (19)

To predict the value of f at the end of the (n+1)th increment, the following relationship is assumed:

f nþ1
¼ f n
þ 2ðf nþ1=2

� f n
Þ. (20)

If the estimated value fn+1 is still negative, it is assumed that the element remains in the elastic range during the

(n+1)th increment. Thus, an ECM is assigned for this element during the (n+1)th incremental calculation. On the

other hand, if fn+1 has a positive value, it is assumed that the element yields during this increment. In this case, a

weighted average of the elastic and elasto-plastic constitutive matrices is employed. To construct the averaged matrix,

the stress state snþ1=2
ij at the mid-increment is scaled back to the yield surface by the scaled-back procedure defined

previously. The averaged constitutive matrix is computed as

Dnþ1=2
av ¼ r2De þ ð1� r2ÞD

nþ1=2
ep , (21)
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where r2 is the scaling factor and Dnþ1=2
ep is the EPCM based on the scaled-back stresses. Here, the scaling factor may be

computed by

r2 ¼ �f n=½2ðf nþ1=2
� f n
Þ�. (22)

2.2. Full-increment step

With the aid of the system tangent stiffness Knþ1=2 after the (n+1/2)th increment, the (n+1)th incremental

calculation is performed to obtain the displacement increment dUnþ1 by applying the full load increment dR.

Subsequently, the strain increment d�nþ1
ij for the element can be evaluated from the kinematic condition

dUnþ1 ¼ ðKnþ1=2Þ
�1 dR in structural level, (23)

d�nþ1 ¼ BdUnþ1 in an element level. (24)

The stress increment dsnþ1
ij can be obtained by using the current constitutive matrix De or Dep, and finally the stresses

snþ1
ij can be estimated by adding the stress increment dsnþ1

ij to the stress sn
ij at the end of the nth loading increment,

dsnþ1
ij ¼ De d�

nþ1
ij or dsnþ1

ij ¼ Dnþ1=2
ep d�nþ1

ij ; snþ1
ij ¼ sn

ij þ dsnþ1
ij . (25, 26)

Procedures at the full-increment step are generally similar to those at mid-increment step. Therefore, only a brief

description is given in the following.

Step 1: Preliminary calculation. The first invaryant Inþ1
1 of stress tensor and the second invariant Jnþ1

2 of deviatoric stress

tensor are computed by using the stresses snþ1
ij .

Step 2: Check for tension cracking. If the hydrostatic stress exceeds the apex value of the yield surface, it need be shifted

to the level of the apex. The calculation procedure is the same with Section 2.1. Subsequently, the following steps should

be performed.

Step 3: Check for a previously plastic element. If the EPCM or an averaged matrix has been used to determine the mid-

increment tangent stiffness, the stress state in the element at the end of the (n+1)th increment is assumed to be plastic

regardless of whether the stress state lies inside or outside the failure or yield surface. The final stress state is then scaled

back to the failure or yield surface and the EPCM is constructed for the next incremental calculation.

Step 4: Check for a previously elastic element. On the other hand, for the element that was elastic at the mid-increment

step, the yield condition must be checked i.e. the stress state is checked against the failure or the current yield surface. If

f nþ1
¼ aInþ1

1 þ

ffiffiffiffiffiffiffiffiffi
Jnþ1
2

q
� k40 is satisfied, the stress state is scaled back to the failure or yield surface and the EPCM is

assigned for the next increment. Otherwise, the stress state remains unchanged and the ECM is used for the next

incremental calculation.
3. Equations of motion based on the Lagrangian approach

In the Lagrangian approach, the fluid is assumed to be linearly elastic, inviscid and irrotational. For a general three-

dimensional fluid, stress–strain relationships can be written in matrix form as follows:

P

Px

Py

Pz

8>>><
>>>:

9>>>=
>>>;
¼

C11 0 0 0

0 C22 0 0

0 0 C33 0

0 0 0 C44

2
6664

3
7775

�v

wx

wy

wz

8>>><
>>>:

9>>>=
>>>;
, (27)

where P, C11 and ev are the pressures which are equal to mean stresses, the bulk modulus and the volumetric strains of

the fluid, respectively. Since irrotationality of the fluid is considered like penalty methods (Zienkiewicz and Taylor,
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1989; Bathe, 1996), rotations and constraint parameters can be included in the stress–strain equations of the fluid. In

Eq. (27), Px, Py, Pz are the rotational stresses; C22, C33, C44 are the constraint parameters and wx, wy and wz are the

rotations about the cartesian axis x, y and z, respectively.

In this study, the equations of motion of the fluid system were obtained using energy principles. Using the finite

element method, the total strain energy of the fluid system may be written as

pe ¼
1

2
UT

f Kf Uf , (28)

where Uf and Kf are the nodal displacement vector and the stiffness matrix of the fluid system, respectively. An

important behaviour of fluid systems is the ability to displace without a change in volume. For reservoir and storage

tanks this movement is in the form of sloshing waves in which the displacement is in the vertical direction. Therefore,

the effects of surface waves and sloshing behaviour of the fluid must be taken into account. It is possible to describe the

behaviour of the free surface of the fluid in terms of the potential energy of the fluid. The potential energy of the systems

due to the free surface motion can be written as

ps ¼
1

2

Z
A

UT
sf rf gUsf dA, (29)

where rf, Usf and g are mass density of the fluid, a vector of free surface vertical displacements and the acceleration due

to gravity, respectively. Using the finite element method, free surface potential energy can be obtained as

ps ¼
1

2
UT

sf Sf Usf , (30)

where Sf is stiffness matrix of the free surface of the fluid system. Also, kinetic energy of the system can be written as

T ¼
1

2
_U
T

f Mf
_Uf , (31)

where _Uf and Mf are the nodal velocity vector and the mass matrix of the fluid system, respectively. The equations of

motion for a system can be derived directly from Lagrange’s equations. These equations are a direct result of applying

Hamilton’s variational principle under the specific condition that the energy and work terms can be expressed in terms

of the generalized coordinates and of their time derivatives and variations (Clough and Penzien, 1993). If Eqs. (28), (30)

and (31) are substituted into Lagrange’s equations, the following set of equations is obtained:

Mf
€Uf þ K�f Uf ¼ Rf , (32)

where K�f and _Uf are the system stiffness matrix including the free surface stiffness and the nodal acceleration vector for

the fluid system, respectively. Rf is a time-varying nodal force vector defined as �Mfag when the earthquake ground

acceleration is applied to the fluid system in which ag is ground acceleration vector. In the formation of the fluid element

matrices, reduced integration orders were utilized. For the eight-noded three-dimensional fluid element, reduced

integration order is chosen as 1� 1� 1 (Bathe, 1996).

The equations of motion of the fluid system, Eq. (32), have a similar form with those of the structure system. To

obtain the coupled equations of the fluid–structure system, the determination of the interface condition is required.

Since the fluid is assumed to be inviscid, only the displacement in the normal direction to the interface is continuous.

Using the interface condition, the equations of motion of the coupled system subjected to ground motion including

damping effects are given by

Mc
€Uc þ Cc

_Uc þ KcUc ¼ Rc, (33)

in whichMc, Cc andKc are the mass, damping and stiffness matrices for the coupled system.Uc, _Uc and €Uc are the vectors of

the displacement, velocity and acceleration, respectively. Rc is the vector of external load of the coupled system.
4. Numerical application and discussion

The selected arch dam for this study is Type 5 as suggested in the symposium on arch dams ICE (1968). The

dimensions of the arch dam are in unit as shown in Fig. 2. Its height is chosen as 120m to obtain realistic results. The

other dimensions of the dam are determined according to this size.

The finite element idealization prepared for dam–water–foundation rock system is presented in Fig. 3. A two-

dimensional view of the finite element mesh at the vertical crown section is also given in this figure. The depth of
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reservoir is 120m in the finite element idealization prepared for dam–water–foundation rock system. The upstream and

banks boundary conditions of reservoir should be nonreflective not to affect numerical results. In this study, instead of

the nonreflective boundary condition, the reservoir length is selected as three times of the reservoir depth to consider the

damping effect arising from the propagation of pressure waves in the upstream direction as in the references, Calayır

and Dumanoğlu (1993) and Calayır et al. (1996). Besides, the nodes at the upstream and bank boundaries are allowed to

move along interfaces.

The nonlinear behaviour of dam concrete is idealized as elasto-plastic using the Drucker–Prager model based on the

associated flow rule assumption. The elasticity modulus, mass density and Poisson’s ratio of the dam concrete are taken

as 2.7579� 107 kN/m2, 2483 kg/m3 and 0.20, respectively. The cohesion c and the angle of internal friction f for elasto-

plastic behaviour of the concrete are 3.75� 103 kN/m2 and 351, respectively. Eight-noded three-dimensional solid

elements are used to represent the dam. The number of the elements in the dam is 128.

The foundation rock is assumed to be linearly elastic and represented by eight-noded three-dimensional solid

elements up to a certain distance from the dam. To avoid reflection of the outgoing waves, these elements are assumed

to be massless. The elasticity modulus and Poisson’s ratio of the foundation rock are taken as 5.5158� 107 kN/m2 and

0.20, respectively. One hundred and sixty-four three-dimensional elements are used in the finite element mesh of the

foundation rock.

The fluid is assumed to be linearly elastic, inviscid and irrotational. The bulk modulus and mass density of the fluid

are taken as 0.207� 107 kN/m2 and 1000 kg/m3, respectively. The rotation constraint parameters of the fluid about each

Cartesian axis are taken as 1000 times of the bulk modulus. The optimum value of the rotation constraint parameter

changes with the properties of material and it can be a different value for various problems. The parameter should be as

high as necessary to enforce the rotational constraint but small enough to avoid causing numerical ill-conditioning in

the assembled stiffness matrix. This parameter is generally taken as 100 times of the bulk modulus in two-dimensional

fluid–structure problems. But, it is taken as 1000 times of the bulk modulus in three-dimensional fluid–structure

problems due to the mentioned reasons (Calayır and Dumanoğlu, 1993; Calayır, 1994; Hamdan, 1999). In addition, 512

eight-noded three-dimensional fluid elements are used to represent the water in the reservoir.
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The fluid is only able to transmit normal forces to both solid (canyon sides) and structure (dam) boundaries. This is

because of its inviscid nature. The slip condition at the solid–fluid interface can be modelled by the use of constraint

relations (Greeves, 1991; Calayır et al., 1996; Olson and Bathe, 1983; Zienkiewicz and Bettes, 1978), interface elements

(Hamdan, 1999) or short and axially almost rigid link (truss) elements in the normal direction of the interface (Akkas- et

al., 1979). At the interface of the reservoir–canyon, one node, which corresponds to the canyon side, of the link element

is completely restrained (grounded), whereas the other is capable of moving in the translational directions. At the

interface of the dam–reservoir, each of nodes of the link element allows translational motions. Thus, complete slip

motion between fluid and the canyon and the fluid and the dam is still possible. The length and the elasticity modulus of

the truss elements are taken as 0.001m and 2� 1016 kN/m2, respectively.
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There are 1374 nodal points in the dam–water–foundation rock system (Fig. 3). At the boundaries of the

dam–water–foundation rock system, there are 518 restrained degrees of freedom. Hence, the active degrees of freedom

(or equations) for dam–water–foundation rock system are determined as 3604 in total.

The Wilson�y method is used for the solution of the general equation of motion (Eq. (33)) of the coupled

fluid–structure system in this study. This method requires that the damping matrix to be represented is in explicit form.

This is accomplished using Rayleigh damping. The Rayleigh damping constants are taken to have the same values for

both fluid and structure. The damping constants are calculated within a frequency range 2–15Hz assuming 5%

damping ratio. The first frequency of the system is 2.941Hz. Accordingly, this frequency range ensures 5% damping

ratio.

In this study, nonlinear dynamic analyses of the selected arch dam are performed according to the assumption that

the dam is subjected to uniform ground motion along the dam–foundation interface. In other words, the same ground

motion is used for all ground support points or the whole region of contact with the foundations is subjected to the

same acceleration simultaneously. The El-Centro N–S record of Imperial Valley earthquake, on May 18, 1940,

measured on a rock-like surface, is chosen as the ground motion (PEER: Pacific Earthquake Engineering Research

Center, 2005). The record shown in Fig. 4 is applied to the coupled systems in the upstream–downstream direction

(y-direction). In the analysis only the first 6.5 s of the earthquake is considered. The time step increment is chosen as

0.001 s for the integration. Hence, the number of time steps for solution of the coupled system is 6500.

Initial (static) stresses and displacements can have strong effects on the nonlinear dynamic response. Therefore, static

analysis of the dam–water–foundation rock system under self-weight and the hydrostatic pressure is carried out to

establish the initial condition for dynamic analysis. Subsequently, the linear and nonlinear dynamic analyses of the

system are performed.

Water levels in the reservoir are considered as 40, 60, 80, 100 and 120m to investigate the water level effects on the

nonlinear dynamic response of the selected arch dam. The time-history of displacements at the dam crest for elasto-

plastic analysis of the selected arch dam on rigid foundation rock is presented in Fig. 5, and that on flexible foundation

rock is presented in Fig. 6. In these figures, nonlinear results are compared with linear results. In addition, the absolute

maximum horizontal crest displacements of the dam on rigid and flexible foundation rock for linear and elasto-plastic

analyses are presented in Table 1.

It is shown from Figs. 5and 6 and Table 1 that the crest displacements increase for the linear and elasto-plastic

analyses of the dam on both rigid and flexible foundation rock as the water level in the reservoir increases. But, the crest

displacements of the dam on flexible foundation rock are greater than those on a rigid one. Comparison of the results

obtained from linear and elasto-plastic analyses of the arch dam shows a drift in the crest displacements. This drift for

the arch dam on rigid foundation rock starts after the water level reaches 100m. However, the drift in the case of

flexible foundation rock starts after the water level 60m. The major source of the drift response is the cumulative strain

that occurs when the stress state exceeds the apex of the failure or yield surface (see Fig. 1) due to the tensile stresses. In

addition to this, elasto-plastic analysis shows that the drift direction is affected by the bias of the stress state caused by

the hydrostatic pressure. This drift response is the main characteristic of the time-history of displacements in the elasto-

plastic analyses because of extensive tensile stresses on the dam body. In Figs. 5 and 6, if the results of the elasto-plastic

model and linear model are compared each other, a drift in the crest displacements of the arch dam is observed in the

upstream direction (+y-direction in Fig. 3). Plastic deformations in dams to earthquake ground motions may occur in

the downstream or upstream direction. In our study, the plastic deformations occur in the upstream direction, as in

Espandar and Lotfi (2003).

Variation of right bank to left bank of the maximum tensile stresses at the section E–E shown in Fig. 7 is investigated

for linear analysis. The yield functions obtained at element A (Fig. 7) selected in the dam body are investigated for
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Fig. 4. The El-Centro N–S record of Imperial Valley earthquake, on May 18, 1940 (PEER: Pacific Earthquake Engineering Research

Center, 2005).
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Fig. 5. The time histories of displacements at the crest of Type 5 arch dam on rigid foundation rock in the y-direction for reservoir water

levels of 40, 60, 80, 100 and 120m.
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nonlinear analysis. The element A is on the upstream face of the dam. The section E–E is on the elements between 80

and 100m from the base (Fig. 7). The stresses at section E–E of the arch dam are given in the x-direction since the arch

action in the response of arch dams is generally pronounced. The stresses are calculated at the centre of the elements.

Figs. 8 and 9 show the stresses on the upstream and downstream faces of the dam on rigid foundation rock,
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Fig. 6. The time histories of displacements at the crest of Type 5 arch dam on flexible foundation rock in the y-direction for reservoir

water levels of 40, 60, 80, 100 and 120m.
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respectively. The corresponding stresses for the dam on flexible foundation rock are shown in Figs. 10 and 11. Here, the

statement ‘‘the stresses on the upstream and downstream faces of the dam’’ means the stresses at the centre of the

elements on upstream and downstream parts of dam. It can be seen from Figs. 10 and 11 that the stresses significantly

increase after the water level in the reservoir reaches 60m. There is an increase in the responses due to the increase in
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Table 1

The absolute maximum crest displacements of Type 5 arch dam on rigid and flexible foundation rock for linear and elasto-plastic

analyses

The absolute maximum crest displacements of Type 5 arch dam (m)

Water level (m) Linear analysis—foundation rock Elasto-plastic analysis—foundation rock

Rigid Flexible Rigid Flexible

40 0.046 0.049 0.049 0.052

60 0.052 0.055 0.055 0.057

80 0.064 0.077 0.069 0.082

100 0.075 0.088 0.079 0.094

120 0.145 0.187 0.233 0.317
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Fig. 7. The upstream view of Type 5 arch dam body.
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Fig. 8. Variation from right bank to left bank of maximum tensile stresses on the upstream face of Type 5 arch dam on rigid foundation

rock for reservoir water levels of 40, 60, 80, 100 and 120m in the x-direction at E–E section.
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water level from 100 to 120m. Due to the increase in the water levels, the stresses in the E–E section are significantly

increased. In addition, decreasing the thickness of the dam across the crest caused an increase of the stresses.

A decrease is seen in the stresses at the elements in the middle of the dam along the section E–E for the water levels 80

and 120m in Fig. 9 and for a water level 120m in Fig. 11. On the other hand, an increase of the stresses occurs at the

same elements for other water levels. It is thought that this situation occurs due to the dam geometry since arch dams

are doubly curved and slender structures.

The time-histories of the yield function f at element A (Fig. 7) in the dam body are given in Figs. 12 and 13. As seen

from Fig. 12, the element on the upstream face of the arch dam on rigid foundation rock for reservoir water levels 40,
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Fig. 9. Variation from right bank to left bank of maximum tensile stresses on the downstream face of Type 5 arch dam on rigid

foundation rock for reservoir water level 40, 60, 80, 100 and 120m in the x-direction at E–E section.
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Fig. 10. Variation from right bank to left bank of maximum tensile stresses on the upstream face of Type 5 arch dam on flexible

foundation rock for reservoir water level 40, 60, 80, 100 and 120m in the x-direction at E–E section.
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Fig. 11. Variation from right bank to left bank of maximum tensile stresses on the downstream face of Type 5 arch dam on flexible

foundation rock for reservoir water level 40, 60, 80, 100 and 120m in the x-direction at E–E section.
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60, 80 and 100m represents elastic behaviour since all values of the yield function are smaller than zero. As known, the

values below zero of the yield function indicate that the element is in elastic state. Although the tensile stresses in the

element increase due to the hydrodynamic effects, this represents elastic behaviour. However, plastic deformations

occurred at the element due to the large tensile stresses for the water level of 120m.

Fig. 13 presents the time-histories of the yield functions at element A on the upstream face of the arch dam on flexible

foundation rock for reservoir water levels at 40, 60, 80, 100 and 120m. After the water level reaches 60m, plastic

deformations occur at the element. As water level in the reservoir increases, the value of the yield function becomes zero

many times. It is seen from the results that the water level in the reservoir considerably affects the elasto-plastic response

of the arch dam.
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Fig. 12. Time histories of yield functions at element A on the upstream face of Type 5 arch dam on rigid foundation rock for reservoir

water level 40, 60, 80, 100 and 120m.
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5. Conclusions

In this study, reservoir water level effects on the nonlinear dynamic responses of an arch dam are investigated by a

Lagrangian approach in which a step-by-step integration technique is employed. The stress–strain behaviour of the dam

concrete is idealized using the three-dimensional Drucker–Prager model based on the associated flow rule assumption.

Water in reservoir is represented by eight-noded Lagrangian fluid finite elements. The results obtained from nonlinear

analyses of a Type 5 arch dam on rigid and flexible foundation rock lead to the following conclusions.
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Fig. 13. Time histories of yield functions at element A on the upstream face of Type 5 arch dam on flexible foundation rock for reservoir

water level 40, 60, 80, 100 and 120m.
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The results obtained from the elasto-plastic analysis of the arch dam shows a drift in the crest displacements. After a

certain water level is reached, the crest displacements of the dam and the arch stresses on the dam body increase

significantly. As can be seen from the results presented, this critical water level is 100m for the dam on rigid foundation

rock, and 60m for the dam on flexible foundation rock.

The maximum tensile stresses in the dam body are considerably affected by increasing the water level in both linear

and elasto-plastic analyses of the arch dam. It has been seen from the time histories of the yield functions of a selected
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element near the crest in the dam body that element behaviour shows a plastic state after the water level reaches 100m

for rigid and 60m for flexible foundation rock.

In the light of the conclusions, it is apparent that reservoir water level effects must be considered in the elasto-plastic

analysis of arch dams to earthquake ground motion. In addition, in the linear analysis of a dam, overstressing problems

in tensile and compressive stresses are encountered. The elasto-plastic model given in this study can overcome the

problem and predict realistic distribution and levels of stresses in the dam body. It is thought that the elasto-plastic

analyses of arch dams are very important for the determination of the plastic regions in the dam body.

Since the dynamic response of arch dams to earthquake loading is affected by several factors, including intensity and

characteristics of the earthquakes, interaction of the dam with the foundation rock and reservoir water, computer

modelling and material properties used in the analysis, the completed responses of Type 5 arch dam subjected to El-

Centro earthquake ground motion should not be generalized to usual arch dams. Whereas the detailed observations

may be dependent on the specific problem, the broad conclusions should apply to many cases.
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